p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.45C22, C24.574C23, C23.382C24, C22.1852+ (1+4), (C2×C42)⋊6C22, C24⋊3C4.9C2, (C22×C4).380D4, C23.611(C2×D4), (C22×C4).68C23, C23.8Q8⋊61C2, C23.4Q8⋊13C2, C23.145(C4○D4), C23.34D4⋊29C2, C23.11D4⋊24C2, (C23×C4).369C22, C22.262(C22×D4), C2.C42⋊24C22, C24.C22⋊61C2, C2.15(C22.29C24), C2.54(C22.19C24), C2.25(C22.45C24), C22.61(C22.D4), (C2×C4).347(C2×D4), (C2×C4⋊C4)⋊111C22, (C2×C42⋊C2)⋊28C2, C22.259(C2×C4○D4), (C22×C22⋊C4).24C2, C2.27(C2×C22.D4), (C2×C22⋊C4).150C22, SmallGroup(128,1214)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 724 in 336 conjugacy classes, 104 normal (18 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C4 [×14], C22, C22 [×10], C22 [×48], C2×C4 [×4], C2×C4 [×46], C23, C23 [×10], C23 [×48], C42 [×4], C22⋊C4 [×28], C4⋊C4 [×8], C22×C4 [×2], C22×C4 [×14], C22×C4 [×8], C24, C24 [×2], C24 [×12], C2.C42 [×8], C2×C42 [×2], C2×C22⋊C4 [×16], C2×C22⋊C4 [×4], C2×C4⋊C4 [×2], C2×C4⋊C4 [×4], C42⋊C2 [×4], C23×C4 [×2], C25, C24⋊3C4 [×2], C23.34D4, C23.8Q8 [×2], C24.C22 [×4], C23.11D4 [×2], C23.4Q8 [×2], C22×C22⋊C4, C2×C42⋊C2, C23.382C24
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×8], C24, C22.D4 [×4], C22×D4, C2×C4○D4 [×4], 2+ (1+4) [×2], C2×C22.D4, C22.19C24, C22.29C24, C22.45C24 [×4], C23.382C24
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=g2=1, d2=c, e2=a, ab=ba, ac=ca, ede-1=gdg=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
(1 9)(2 10)(3 11)(4 12)(5 22)(6 23)(7 24)(8 21)(13 25)(14 26)(15 27)(16 28)(17 31)(18 32)(19 29)(20 30)
(1 27)(2 28)(3 25)(4 26)(5 30)(6 31)(7 32)(8 29)(9 15)(10 16)(11 13)(12 14)(17 23)(18 24)(19 21)(20 22)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 23 9 6)(2 7 10 24)(3 21 11 8)(4 5 12 22)(13 29 25 19)(14 20 26 30)(15 31 27 17)(16 18 28 32)
(1 27)(3 25)(5 7)(6 29)(8 31)(9 15)(11 13)(17 21)(18 20)(19 23)(22 24)(30 32)
(1 25)(2 14)(3 27)(4 16)(5 18)(6 29)(7 20)(8 31)(9 13)(10 26)(11 15)(12 28)(17 21)(19 23)(22 32)(24 30)
G:=sub<Sym(32)| (1,9)(2,10)(3,11)(4,12)(5,22)(6,23)(7,24)(8,21)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30), (1,27)(2,28)(3,25)(4,26)(5,30)(6,31)(7,32)(8,29)(9,15)(10,16)(11,13)(12,14)(17,23)(18,24)(19,21)(20,22), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,23,9,6)(2,7,10,24)(3,21,11,8)(4,5,12,22)(13,29,25,19)(14,20,26,30)(15,31,27,17)(16,18,28,32), (1,27)(3,25)(5,7)(6,29)(8,31)(9,15)(11,13)(17,21)(18,20)(19,23)(22,24)(30,32), (1,25)(2,14)(3,27)(4,16)(5,18)(6,29)(7,20)(8,31)(9,13)(10,26)(11,15)(12,28)(17,21)(19,23)(22,32)(24,30)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,22)(6,23)(7,24)(8,21)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30), (1,27)(2,28)(3,25)(4,26)(5,30)(6,31)(7,32)(8,29)(9,15)(10,16)(11,13)(12,14)(17,23)(18,24)(19,21)(20,22), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,23,9,6)(2,7,10,24)(3,21,11,8)(4,5,12,22)(13,29,25,19)(14,20,26,30)(15,31,27,17)(16,18,28,32), (1,27)(3,25)(5,7)(6,29)(8,31)(9,15)(11,13)(17,21)(18,20)(19,23)(22,24)(30,32), (1,25)(2,14)(3,27)(4,16)(5,18)(6,29)(7,20)(8,31)(9,13)(10,26)(11,15)(12,28)(17,21)(19,23)(22,32)(24,30) );
G=PermutationGroup([(1,9),(2,10),(3,11),(4,12),(5,22),(6,23),(7,24),(8,21),(13,25),(14,26),(15,27),(16,28),(17,31),(18,32),(19,29),(20,30)], [(1,27),(2,28),(3,25),(4,26),(5,30),(6,31),(7,32),(8,29),(9,15),(10,16),(11,13),(12,14),(17,23),(18,24),(19,21),(20,22)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,23,9,6),(2,7,10,24),(3,21,11,8),(4,5,12,22),(13,29,25,19),(14,20,26,30),(15,31,27,17),(16,18,28,32)], [(1,27),(3,25),(5,7),(6,29),(8,31),(9,15),(11,13),(17,21),(18,20),(19,23),(22,24),(30,32)], [(1,25),(2,14),(3,27),(4,16),(5,18),(6,29),(7,20),(8,31),(9,13),(10,26),(11,15),(12,28),(17,21),(19,23),(22,32),(24,30)])
Matrix representation ►G ⊆ GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 3 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4] >;
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | 4B | 4C | 4D | 4E | ··· | 4R | 4S | 4T | 4U | 4V |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | 2+ (1+4) |
kernel | C23.382C24 | C24⋊3C4 | C23.34D4 | C23.8Q8 | C24.C22 | C23.11D4 | C23.4Q8 | C22×C22⋊C4 | C2×C42⋊C2 | C22×C4 | C23 | C22 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 2 | 1 | 1 | 4 | 16 | 2 |
In GAP, Magma, Sage, TeX
C_2^3._{382}C_2^4
% in TeX
G:=Group("C2^3.382C2^4");
// GroupNames label
G:=SmallGroup(128,1214);
// by ID
G=gap.SmallGroup(128,1214);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,120,758,723,675]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=g^2=1,d^2=c,e^2=a,a*b=b*a,a*c=c*a,e*d*e^-1=g*d*g=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations